Mostrando entradas con la etiqueta applet. Mostrar todas las entradas
Mostrando entradas con la etiqueta applet. Mostrar todas las entradas

sábado, 3 de diciembre de 2011

CONJECTURA DE GOLDBACH

Començarem per treballar la conjectura de Goldbach. Diu que qualsevol nombre parell major que 2 es pot escriure com suma de dos nombres primers, per exemple 12 = 5 + 7. Aquests dos nombres s’anomenen nombres de Goldbach.


1. Escriu una suma de Goldbach per al 10.
10=7+3
10=5+5


2. En molts casos es pot escriure un nombre parell de més d’una manera com suma de Goldbach; per exemple, 16 és 3+13 i també 7+9. Troba dues maneres d’escriure la suma de Goldbach del
18.
18=11+7
18=13+5

3. Per a cada cas, escriu totes les possibles sumes de Goldbach:
6 =3+3

8=3+5


10=7+3
10=5+5

12=7+5

14=11+3
14=7+7

16=3+13
16=5+11

18=13+5
18=11+7

20=17+3
20=13+7


22=19+3
22=17+5

24=19+5
24=17+7
24=13+11

26=23+3
26=19+7
26=13+13

28=5+23
28=11+17

30=7+23
30=11+19
30=13+17

32=3+29
32=13+19

34=3+31
34=5+29
34=11+23
34=17+17

36=5+31
36=7+29
36=13+23
36=17+19

38=7+31
38=19+19

40=3+37
40=11+29
40=17+23


42=5+37
42=11+31
42=13+29
42=19+23


44=3+41
44=7+37
44=13+31

46=3+43
46=5+41
46=17+29
46=23+23

48=5+43
48=7+41
48=11+37
48=17+31
48=19+29

50=3+47
50=7+43
50=13+37
50=19+31


52=5+47
52=11+41
52=23+29

54=7+47
54=11+43
54=13+41
54=17+37
54=23+31

56=3+53
56=13+43
56=19+37

58=5+53
58=11+47
58=17+41
58=29+29

60=7+53
60=13+47
60=17+43
60=19+41
60=23+37
60=29+31


4. Segons augmenten el nombres, què sembla passar al nombre de sumes de nombres primers?

Segons augmenten el nombre, el nombre de sumes també augmenta.

5.Dibuixa una gràfica que relacione cada nombre parell (eix X) i el nombre de sumes de Goldbach (eix Y). Pots utilitzar la calculadora gràfica o GeoGebra.

Este es un Applet de Java creado con GeoGebra desde www.geogebra.org – Java no parece estar instalado Java en el equipo. Se aconseja dirigirse a www.java.com

6. Amb açò has demostrat que tot enter entre 4 i 60 pot ser escrit com la suma de dos primers
diferents?
Només els nombres enters parells.

7. Com podries provar la conjectura de Goldbach pels nombres de 4 a 70?
62=3+59
62=19+43
62=31+31

64=3+61
64=5+59
64=11+53
64=17+47
64=23+41

66=5+61
66=7+59 66=13+53
66=19+47
66=13+43
66=29+37

68=7+61
68=31+37

70=3+67
70=11+54
70=17+53
70=23+47
70=29+41

8. Com podries demostrar que la conjectura de Goldbach és falsa?
Es comprovaria que és falsa trobant un sol cas on no es verificara


Encara que aquesta conjectura sembla ser certa, no ha estat demostrada des que va ser proposada per Christian Goldbach a Leonard Euler el 1742. Recentment, un ordinador va verificar que la conjectura és certa per valors fins a 200,000,000,000,000,000. Tanmateix, que no és una prova de la conjectura.


9. Imagina que la conjectura de Goldbach ha estat comprovada per algun nombre molt gran


(major encara que l’esmentat abans). Voldrà dir que és vàlida per a qualsevol nombre?
No ja que sempre hi haurá infinits parells majors del nombre que hem comprovat, i pot ser (no crec) que hi haja algun nombre que no compleixi aquesta conjectura.




jueves, 3 de noviembre de 2011

ESPIRAL DE DURERO

Ací veiem la construcció de l'espiral de Durero:

Creat per Mario Pastor:




















Este es un Applet de Java creado con GeoGebra desde www.geogebra.org – Java no parece estar instalado Java en el equipo. Se aconseja dirigirse a www.java.com

lunes, 31 de octubre de 2011

PHI A NOTRE-DAME

A la catredal de Notre Dame hi observem més rectanlges auris:

Creat per Mario Pastor

domingo, 30 de octubre de 2011

PHI AL PARTENÓ

A aquesta construcció arquitectónica anomenada el Partenó, fet per Fidias, hi podem diferenciar uns quants rectangles auris:

Creat per Mario Pastor:
D'aquesta construcció també podriem treure l'espiral de Durero, basada en les proporcions auries.

viernes, 28 de octubre de 2011

APPLET: NOMBRE PHI A L'UNIVERSITAT DE SALAMANCA

A aquest applet, on es veu la façana de l'universitat de Salamanca, podem distingir quatre rectangles auris:

Creat per Mario Pastor